509章 营养跟不上了
章节报错
被沈点名的数院男生台,小伙子胸有成竹拿起粉笔,刷刷刷奋笔疾书。
男生使用学代数知识创建了一系列有规律性的等式:
(1-x)(1+x)=1-x2
(1-x)(1+x+ x2)=1-x3
(1-x)(1+x+ x2+ x3)=1-x4
男生将括号打开依次展开,正负x的1次方、2次方、3次方相互抵消。
之后是一波行云流水的操作,男生得到等式:1+2x+3x2+4x3+……=1/(1-x)2
《数论史》记载,欧拉当时取式的x=-1,得到1-2+3-4+5-6+……=1/4
虽然数字的绝对值不断变大,但由于正负号的存在而相互抵消,所以得到了1/4。
这是条件收敛法,数院男生是这么做的,他继续将偶数位的总和扩大到2倍,再将等式两边都除以-3,最终推导出1+2+3+4+5+……=-1/12。
“谢谢这位同学。”沈满意男生的答案,转而面向全体同学问到:“欧拉用无穷多的正整数相加,得到一个负数,他究竟想表达什么?”
有同学说到:“所谓无穷大,是不知是正还是负。”
“ok,回答正确。欧拉最初赋予无穷大的意义,对当时的数学的意义不大,但对200多年后的数学和物理意义重大。”沈在黑板写出几个简单的式子。
沈把-1/12这个欧拉公式代入光子的能量公式,于是光子的能量=2-(d-1)/12
令d=25
则2-(25-1)/12=0
“d是维度,所以令人震惊的结果产生了,基于18世纪的欧拉公式,我们发现,在25维空间,光子的质量为0!”沈讲课的思维跳跃性很强,一下子从18世纪穿越到了20世纪。
“这么吊?”
“我营养跟不了,我喝点营养快线。”
同学们听的很过瘾,然而不是每一个人都能立即跟沈的教学思路。
“欧拉公式与20世纪前半段提出的相对论并不矛盾,与20世纪后半段提出的弦理论同样吻合,下面我们进入高维空间的部分。”沈讲课天马行空,他以一部小说引出欧拉公式,让一位同学用奥数竞赛的方式证明欧拉公式,然后过渡到25维空间、相对论和弦理论。
“弦理论适用于25维以内的空间,超弦理论只适用于9维以内的空间。”
“换个说法吧,根据超弦理论的观点,我们所在的空间不是普通的三维空间,而是超空间。”
“在超空间,除了普通的数字确定的坐标之外,还存在以格拉斯曼数表示的额外维度。”
“在i型超弦理论,提到了32维的旋转对称性。”
“而规范场论规定,圆的旋转对称性是电磁力的规范对称性。”
“另外,在扩充了电磁力规范场论的杨-米方程理论,高维度空间的旋转对称性是规范对称性。”
“一旦超对称性预言的粒子被我们发现,会打开验证超弦理论的新道路,这将刷新人类对空间的认知。”
“有同学提到了lhc和希格斯玻色子,我要说明一下,希格斯玻色子的发现,证明了电磁力和弱力之间的对称性会发生自发破缺,它是‘帝粒子’,但我们依然需要‘帝’更有说服力的证据。”
……
沈越讲越高深,这已经不是高等代数了,而是一门融合了代数、相对论、高维度物理的综合性课程。
同学们原本在做笔记,此刻他们啥也不做了,是坐着听课。
一位年轻讲师小声嘀咕:“沈教授这课讲的很过瘾,触及到了数学和物理的终极理论,然而大一学生能完全听懂吗?”
“大一学生如果能听懂,他们本科毕业后可以直接当教授了。”旁边的一位助教心说,大一学生能听懂个毛线哦,这节课的信息量太大了。
如果要解释一个专业术语,那么将涉及到更多的专业术语,这需要听课者具备极其深厚的理论知识储备。
很明显,即便是在同龄人出类拔萃的燕大本科一年级学生,也很难储备如此巨量的知识信息。
沈也不管学生们能不能听懂,他按他的方式讲课。
学生们的表情是刺激与懵逼共舞,痴迷与痴呆齐飞。
听的爽歪歪,但具体是爽到哪里了,歪歪在何处,学生们也说不清楚。
还有10分钟下课,沈强行收尾,他在最后时刻施展出光一般的手速,以超乎想象的速度写满了一黑板符号。
这年头都是多媒体教学,老师们习惯了播放ppt讲义,“敲黑板”逐步演变为一种代名词,代表着重点内容、重要考点。
沈做报告做演讲,也都是ppt形式播放,唯独课,他喜欢传统的黑板模式。
黑板模式有几个好处,一是可以练字儿,二来给同学们一定的思考时间,老师写黑板的时候,学生有时间消化吸收知识。
看着满黑板的数学符号,大多数学生依旧是痴迷+痴呆状态,不知道沈教授写的是什么,总而言之感觉很厉害的样子。
刚才那位台做证明的男生拍案而起,他特别激动:“这……这是黎曼zeta函数!”
沈望向男生:“哟呵,你很强啊小伙子,是的,这是黎曼zeta函数,所以呢?”
“所以……所以……”这位男生知其然不知其所以然,却仍是全教室最聪明的一位学生。
“所以我们回到了这节课的主题---数学,再天花乱坠的东西,最终也要依靠数学来解释。黑板写的内容,是用黎曼zeta函数来证明正整数无穷相加得负数的欧拉公式,将这个结果代入光子的能量公式,你们会发现……”
“哦,下课了,这是我留给你们的课后作业,请大家在课后思考一个最基本的数学问题,复数s的函数的实部1大,会推导出怎样的结果?”沈以黎曼zeta函数结束了这节高代课,这节课的信息量确实很大,但没关系,只要学生能听懂最后5分钟行了,整节课的精华是最后5分钟。
万一学生连最后5分钟也没听懂那咋办?
那得请教老师呀。
下课后,学生们将沈团团围住虚心请教。